Application Note

PRU - Getting started Guide (RTQOS) -
AM243x LP EVM / AM64x GP EVM

13 TEXAS

INSTRUMENTS

Rev. <ref>
<date>

Tl Information — Selective Disclosure

Revision History

Version Date Author Description
Initial version using Code Composer
0.1 Sept 28 - 2022 Thomas Leyrer | Studio (CCS) for build and debug,
AM?243x Launchpad
0.2 Oct 18 — 2022 Added OSPI boot image

Tl Information — Selective Disclosure

Table of Contents

R (414 7o Yo [0 4 o o T PO TP TP TSP PP S PPPPRPPRPPPOTPIN 4
2 SOFEWArE INSTAlAtiON .c..ciieiiieieeeee et st sttt ettt b e r e r e e re s 6
2.1 MCU+ SDK TOr AM2ABX/AMBAXccuveereeereeiieeiieeitestesee st esteessesseeseesseesteesteeteestesssesasesasesseesseensessesssenssesseans 6
2.2 (0o Yo [l o] Yo Te 1Y=T gy (Lo [o TN (001 ISR 6
2.3 VY o] T T I =1 AU SR 7
2.4 Target CoNFfIGUIAtioN File......oouii ittt sttt st et esareesat e e sareesaneenas 8
25 Start-up script for N0 D00t MOTEeeiiiiiie e s 8

I T 1o AV =TT Y =Y U] o SRR 9
4 Additional Help from €26 fOrUmi.. .. i ittt st sttt st e st e s bt e st eeabeesabeesaneesas 10
4.1 How to use CCS 10 conNECt t0 PRU (ICSS_G)?...uiiiiieiiieeiiecieeete e stees e e steesaaeesiteesase e sateesaaeesaaeessaeessneenseeas 10
4.2 How to check and set PRU Core FrequenCy iN CCS? ...uiiiiiiiieeeciieeeectee e eeitee e sitveeeesttee e seasaae s seavaeassnsaeeeenns 10

D EX@MIPIES ottt et b et bt e he e e h e e e bt e e he e e bt e e he e e bt e e hee e be e e bee e beeeneesbeeenneenares 11
5.1 My first PRU Program — ClanGUAEEccouueerueeiiieeieeriteeeitee st e et ste e st siteesaeeesiteesae e e satessateesanessneeesaneenneeas 11
5.2 My first PRU Program — ASSEMDIETccuuiiiiceiee ettt e ettt e et e e e st e e e st ta e e eeaaaae e stseeeeentaeeeanns 15
53 My first PRU program — mixed C With ASSEMDBIENooiiiiiiiiiee e 19

(SR AN 1Y, B 1 V=] OO PPPU I UPTPPPPP 21
6.1 PRUZHEX ...ttt ettt ettt ettt ettt st st s b e s bt e bt e et e st e bt e b e e b e e et e s et e satesbeenbe e bt eabeeaeeeaeeebeenbe e beeabesanesanes 21
6.2 SYSCONFIG ..ttt ettt et ettt sttt et et s h e e sb e s bt e s bt e bt eab e sheeeb e e bt en b e ea b e eabesabesbeesbeenbee bt enteenseensennaenbnens 23
6.3 PRU DIIVEE APttt st sttt et et e h et sae st sa e a e e et e e e eaeesr e e bt e reeneennesanes 25
6.4 BOOT frOM FIASH ..ttt ettt b ettt st st e s bt e s bt e bt e at e eaeesbe e b e e b e eabeeabesaees 26

Y A o 1T e | PSPPI 27
7.1 RETEIENCES. ...ttt et s ae e r et e s r e n e e n e 27
7.2 Lo O I 1 I T 1) (= N 28
7.3 [U oY o =T F o [l o Yo 1] =T U PUPRRNt 29

3

Tl Information — Selective Disclosure

1

Introduction

Programable Real-time Unit (PRU) is a 32 bit non-pipelined RISC CPU which solves interface and processing
functions with minimum latency and minimum jitter. In addition, it is used to implement custom protocols
over standard interfaces or add missing standard interfaces on Sitara MCU+ and MPU products. Besides non-
pipelined CPU at a speed of up to 333 MHz there are two key differentiating features.

e GPIO signals are directly mapped to internal register file
e Broadside extension which supports 1024 bit data bus for data transfer and data processing accelerators

This document limits the scope to direct GPIO and simple broadside accelerator functions. In total AM243x
and AM64x devices contain 12 PRU cores which can work independent from each other or fully synchronized
as multi-core real-time domain. The cores are split out into two Industrial Communication Subsystem (ICSS_GO
and ICSS_G1). Table-1 shows a summary of all cores with memory configuration and global address space of
instruction memory. All cores have together 96kB of zero wait-state instruction memory. When PRU is halted,
new code can be downloaded which is useful in case program memory is limited. For example, configuration
and initialization code is executed first before operational code is downloaded and executed.

ICSS_G PRU IMEM global address

instance instance [kBytes] IMEM

PRGO PRUO 12 0x03003 4000
RTU_PRUO 8 0x03000 4000
TX_PRUO 6 0x03000 A00O
PRU1 12 0x30003 8000
RTU_PRU1 8 0x03000 6000
TX_PRU1 6 0x03000 C000

PRG1 PRUO 12 0x0300B 4000
RTU_PRUO 8 0x03008 4000
TX_PRUO 6 0x03008 A000
PRU1 12 0x3000B 8000
RTU_PRU1 8 0x03008 6000
TX_PRU1 6 0x03008 C000

Table 1 — PRU cores and instruction memory

Control of PRU operation is provided through ICSSG_PRU_CONTROL register. It provides ARM core the
possibility to start, stop and reset the core. When PRU core is stopped then ARM can download new code in
instruction memory. There is a control bit which enables PRU cycle counter and stall counter. These counters
can be read by PRU during runtime and while working with the debugger. Description of the registers can be
found in TRM chapter 6.4.14.1. The debugger supports control register view.

Tl Information — Selective Disclosure

Programmable Realtime Unit (PRU)

broadside
interface

Figure 1- Programmable Real-time Unit

PRU core has 32 register (R0-R31) each with 32 bit width. There are 32 bit constant registers (C0-C31) which
have predefined address of commonly used 10s and memory. A few of the constant registers can be
programmed with certain offset. These registers are used in combination with load and store instructions to
save on normal registers and instruction memory.

Figure 1 shows simplified block diagram of PRU. R30 has 20 GPOs directly mapped to bits O - bit 19. R31 has 20
GPIs mapped the lower 20 bits of the register. These registers can be programmed at a bit level, with 8/16/32
bit instructions. For example “set r30, r30, 3” instruction sets external pin PRUO_GPO3 to logic high — typically
3.3V level. Clear instruction sets the GPO to GND. R30 register can also be part of any instruction which
operates on register file. For example instruction “xor r31.b1, r30.b0, r30.b0” inverts signals on GPI0..7 to
GP08..15 in 3 ns. Note that GPIs and GPOs are mapped to the same pins and you need to select which
direction to use. For fast direction switch such as a data bus of parallel interface, there is common output
enable register inside ICSS — see TRM “6.4.2.2 PRU_ICSSG Fast GPIO pins” for details. R30 and R31 have
additional function for event generation and polling which is not described in this document. PRU polling for
internal and external events can be replaced now (ICSS_G devices) with real-time task manager. The task
manger support two cycle interrupt latency with no jitter and belongs to the broadside extension of PRU.
There are broadside functions for data processing and data transfers. A summary chart of broadside functions
is shown in the appendix. It lists the registers used by the XIN, XOUT instructions (broadside instructions)
which is important to know as they may overlap with register usage with own program or C compiler.

Tl Information — Selective Disclosure

2 Software Installation

Installation of various tools from ti.com website is required to get started with PRU firmware projects. This
chapter describes all steps needed to develop, run and debug PRU code.

2.1 MCU+ SDK for AM243x/AM64x

MCU plus software development kit (SDK) contains sample projects for PRU functions and driver/APIs for
managing PRU from ARM side. Install the latest from following link:

AMG64x: https://www.ti.com/tool/PROCESSOR-SDK-AM64X

AM243x: https://www.ti.com/tool/MCU-PLUS-SDK-AM243X

Default installation path c:/ti and you will find MCU+ SDK under this directory. There is a
README_FIRST_AM243X.html file which can be opened for off-line documentation.

The download instruction [link] also ask for installing SYSCONFIG

https://www.ti.com/tool/SYSCONFIG

Python 3
https://www.python.org/downloads/windows/

PRU compiler
https://www.ti.com/tool/PRU-CGT

TI CLANG Compiler Toolchain

https://software-

dl.ti.com/codegen/esd/cgt public sw/ARM LLVM/1.3.1.LTS/ti cgt armllvm 1.3.1.LTS windows-
x64 installer.exe

Other components like OpenSSL and Mono Runtime are not required for Windows based system

2.2 Code Composer Studio (CCS)

There can be various options with the PC or notebook which are important to understand. In case CCS is not
installed before on the PC then download latest version of CCS from ti.com with following link:

New Install: https://www.ti.com/tool/CCSTUDIO

During installation process the tool asks for custom installation which is recommended. Make sure to pick one of

the Sitara MCU or MPU components as shown below.

Tl Information — Selective Disclosure

https://www.ti.com/tool/PROCESSOR-SDK-AM64X
https://www.ti.com/tool/MCU-PLUS-SDK-AM243X
https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/08_03_00_18/exports/docs/api_guide_am243x/SDK_DOWNLOAD_PAGE.html
https://www.ti.com/tool/SYSCONFIG
https://www.python.org/downloads/windows/
https://www.ti.com/tool/PRU-CGT
https://software-dl.ti.com/codegen/esd/cgt_public_sw/ARM_LLVM/1.3.1.LTS/ti_cgt_armllvm_1.3.1.LTS_windows-x64_installer.exe
https://software-dl.ti.com/codegen/esd/cgt_public_sw/ARM_LLVM/1.3.1.LTS/ti_cgt_armllvm_1.3.1.LTS_windows-x64_installer.exe
https://software-dl.ti.com/codegen/esd/cgt_public_sw/ARM_LLVM/1.3.1.LTS/ti_cgt_armllvm_1.3.1.LTS_windows-x64_installer.exe
https://www.ti.com/tool/CCSTUDIO

80 Setup — X
Select Components h a

Select the components you want to install; clear the components you do not want to install. Click Next when you are ready to continue.

[[] MSP430 ultra-low power MCUs Click on a component to get a detailed description
[7] sSimpleLink™ MSP432™ low power + performance MCUs

[] SimpleLink™ CC13xx and CC26xx Wireless MCUs

[[] SimpleLink™ Wi-Fi® CC32xx Wireless MCUs

[] €C2538 IEEE 802.15.4 Wireless MCUs

[] 2000 real-time MCUs

[] TM4C12x ARM® Cortex ® -M4F core-based MCUs

[] Hercules™ Safety MCUs

[] Sitara™ AM3x, AM4x, AM5x and AM6x MPUs

Sitara™ AM2x MCUs

[] OMAP-L1x DSP + ARM9® Processor

[] DaVinci (DM) Video Processors

[] OMAP Processors

[[] TDAx Driver Assistance SoCs & Jacinto DRAx Infotainment SoCs

Figure 2 — Sitara Component Selection

In case there is an older version of CCS installed it does not support latest ARM CLANG compiler and PRU
compiler. It is recommended to upgrade CCS versions older than version 10 to the latest. Third option is that
there is CCS for MCUs such as MSP430 and C2000 CPUs installed. In this case you will lack Sitara device
components, the compiler for ARM and PRU. New compilers are installed from CCS HELP Menu -> Install Code
Generation Compiler Tools. After CCS is installed, check that all required components are installed.

CCS “Window Menu -> Preferences” gives an overview of installed compiler and products.

Check that compilers for ARM Tl Clang and PRU are shown in Discovered tools window.

& Preferences o X

type filter text Compilers
General 2 | Tool discovery path

516 /ti/ces 1040 Add.

Hc

FA71C/Program Files/Texas Instruments

v Code Composer Stu
Advanced Tools
v Build
Compilers
Environment

Variables Discovered tools:
v Debug £T1v83.12 T A Refresh
Cache View Re 2718311
Memory Rend #71v83.10
Modules View #T1v832
05 Support D. #7822
| Target Status £ v mPRU
| Grace #7233
v Products #£TIv232
| Energia #71v221
| RTSC #TIv214 (Ot 4 X
| > Help < 2
| 7 Install/Update
Run/Debug I "] search for tools each time Code Composer Studio starts (may affect start-up time)
<B " Restore Defaults Apply
I
? i &4 Show advanced setting: Apply and Close Cancel

Figure 3- CCS Compiler selection

Under CCS “Window -> Preferences” Code Composer Studio -> Products you should find MCU+ SDK and
SYCONFIG.

2.3 EVM software setup

Tl Information — Selective Disclosure

Next step in bringing up the EVM for operation is bootloader configuration. Follow the steps in the [link] which
configures UART for terminal operation, download boot loader into flash and allows for no boot mode. The
examples in this document run with all boot modes including NO BOOT MODE.

2.4 Target Configuration File

In the description of creating target configuration file for the EVM the PRU cores are disabled. Do not follow this
step and make sure PRU cores of ICSS_GO and ICSS_G1 are enabled. To get to the settings of connections you
need to click on the advanced tab at the bottom of the screen. Figure 4 shows the PRU cores enabled.

& workspace_v10 - C:\Users\a0746725\ti\CCSTargetConfigurations\LP-AM?243x _latest.ccxml - Cade Composer Studio —]

File Edit View Project Run Tools Scripts Window Help
[nihg e & v ML AL " vie v vt Q i®

= B mainasm ¥ Emainc [Ehwtypesh hwitypesh .ccsproject EICSSGPWM Cmap B LP-AM243x). o [Hemptyc % =
& ICSSG_PWM/main.asm
Target Com aratro @

All Connections Cpu Properties

PRU Accelerator

~ -4 Texas Instruments XDS110 USB Debug Probe_0 Import...
~ & AM243x_LAUNCHPAD_O

~ © AM2434_ ALX 0
v % CS_DAPO
¥ % MAIN_PULSAR_0_0

New... Set the properties of the selected cpu.

O Bypass
[[] Secondary Processor

MAIN_Cortex R5 0.0
v & MAIN_PULSAR 0_1

MAIN_Cortex_R5_0_1 Down
~ % MAIN_PULSAR 1.0

MAIN_Cortex R5_1.0
v X MAIN_PULSAR_1_1

MAIN_Cortex R5 1.1
v % DMSC

DMSC_Cortex M3_0
v % ICSS_GO

1CSS_GO_PRU_0

® 1CSS_GO_RTU_PRU_O

1CSS_GO_TX_PRU_D

1CSS_GO_PRU 1

1 1CSS_GO_RTU_PRU_1

® 1CSS_GO_TX_PRU_1

initialization script Browse...

Figure 4 — Target Configuration file with PRU support

After CCS load and power-up of the EVM the first step is to connect to target configuration file.

2.5 Start-up script for no boot mode

In no boot mode requires to run start-up script on scripting console. Bring up scripting console using Menu VIEW
-> Scripting Console. At the command prompt enter the start-up script

js:> loadJSFile "C:/ti/mcu_plus_sdk_am243x_08_03_00_18/tools/ccs_load/am243x/load_dmsc.js"

For different EVM and sdk replace the SDK device name and revision:

js:> loadJSFile "C:/ti/mcu_plus_sdk_am64x_08_01_00_36/tools/ccs_load/am64x_am243x/load_dmsc.js"

Final step before working with PRU cores is to connect with core. A right click on the PRU core brings up a pop
menu. Select connect to get PRU in suspended mode. In this mode the firmware can be loaded and started.

Tl Information — Selective Disclosure

https://software-dl.ti.com/mcu-plus-sdk/esd/AM243X/08_03_00_18/exports/docs/api_guide_am243x/EVM_SETUP_PAGE.html

3 Hardware Setup

The AM243x Launchpad hardware requires power over USB Type-C connector and JTAG/UART connection over
USB cable. You should first plug in power before connecting to JTAG/UART. It is important to configure the boot
mode settings on die DIP switch.

USB Type-C Power Input

ITAG
XDS110\UART
~c=—

(PN B ¥ 500T MODE
SRR | g

Figure 5 — AM243x Launchpad with Power and Debug connector

In case of boot loader is not stored into external flash memory the DIP-switch is set to NO BOOT MODE as shown
in the image on the left. In this mode the user needs to run a start-up script on scripting console.

e - "
BOOTMODE 1-8 (SW4) BOCLTA":'(CT”;Z;? ’(jg’;é BOOTMODE 1-8 (SW4)
NO BOOT MODE QSPI BOOT MODE

Figure 6 - boot modes

Figure 6 shows the different boot modes. With UART boot mode and python script a boot loader and application
image can be flashed in to external memory. QSPI boot mode is selected to boot from external flash. The
procedure is described in Getting started of MCU+ SDK.

Tl Information — Selective Disclosure

4 Additional Help from e2e forum

E2E forum entries related to PRU:

4.1 How to use CCS to connect to PRU (ICSS_G)?

https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1045297/fag-am64x-am?24x-how-
to-use-code-composer-studio-ccs-to-connect-to-pru_icssg

4.2 How to check and set PRU Core Frequency in CCS?

https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1041347/faq-pru_icssg-how-to-

check-and-set-pru-core-frequency-in-ccs

10
Tl Information — Selective Disclosure

https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1045297/faq-am64x-am24x-how-to-use-code-composer-studio-ccs-to-connect-to-pru_icssg
https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1045297/faq-am64x-am24x-how-to-use-code-composer-studio-ccs-to-connect-to-pru_icssg
https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1041347/faq-pru_icssg-how-to-check-and-set-pru-core-frequency-in-ccs
https://e2e.ti.com/support/processors-group/processors/f/processors-forum/1041347/faq-pru_icssg-how-to-check-and-set-pru-core-frequency-in-ccs

5 Examples

Linker command files for different devices and PRU cores can be found at:
https://git.ti.com/cgit/pru-software-support-package/pru-software-support-
package/tree/labs/Getting Started Labs/linker cmd

For AM243x devices the AM64x cmd files can be used. The linker command file defines instruction memory, data
memory and peripheral address. Section .text is entry point for both assembler and C language and needs to
start at instruction memory address 0 of PRU which is the default reset program counter of PRU. There is an
option to program reset vector to different address in PRU configuration register. For C language _c_int00* is
also mapped to address 0. Additional data memory like stack pointer and .bss section resides in 8kB data

memory.

5.1 My first PRU program — C language

Learning goal:
Shows basic examples how to generate PRU C Program

B Example introduces linker command file and map file
B Example shows CCS debug window including disassembler window
B Example explains PRU register usage on function calls

There are two options to generate CCS projects. With MENU File -> Import an existing CCS project can be loaded.
A new CCS Project is generated using MENU File -> New -> Project -> Code Composer Studio. It brings up the
New Project wizard as shown in figure 7.

&8 New Project O X

Select a wizard

Create a new C/C++/ASM project and let CCS create and manage the makefile.
Wizards:

[
= C/C++ ~
v & Code Composer Studio
i CCS Project
& Energia
= RTSC

Cancel

Figure 7- Generate new CCS Project

Select target hardware like AM243x Launchapd, PRU core, project name and empty project (main.c) according to

figure 8.

11
Tl Information — Selective Disclosure

https://git.ti.com/cgit/pru-software-support-package/pru-software-support-package/tree/labs/Getting_Started_Labs/linker_cmd
https://git.ti.com/cgit/pru-software-support-package/pru-software-support-package/tree/labs/Getting_Started_Labs/linker_cmd

&P New CCS Project O X

New CCS Project E;

Create a new CCS Project.

Target: <select or type filter text> ~ || AM243x LAUNCHPAD v

Connection: > Verify.

Cortex M [Arm] ' Cortex R [Arm] & PRU

Project name: MyFirstﬁPRUJﬁjrogramﬂ

Use default location
C:\Users\a0746725\workspace_v10\MyFirst PRU_C_Prog

Compiler version: | TIv2.3.3 ¥

» Project type and toal-chain

~ Project templates and examples

type filter text Creates an empty project initialized for the
A || selected device. The project will contain an
empty 'main.c’ source-file.

~ [E Empty Projects
[& Empty Project
[Empty Project (with main.c)
[& Empty Assembly-only Project
[& Empty RTSC Project v

Open Resource Explorer to browse a wide selection of example projects... v

@ < Back Next > Cancel
Figure 8 - Generate PRU C Project

A new project is generated which is listed in the Project Explorer in CCS. To view the properties of the project,
click on the project and press [ALT+ENTER] — alternative is right-click with the mouse on the project name and

select Properties from the pop-up menu. The CCS General selector shown in figure 9 gives an overview of which

device and tools are selected. The linker command file should be selected to pick PRU memory map which is

different for PRU, RTU_PRU or TX_PRU. In the example below there is AM64x_PRUO.cmd selected which also fits

for AM243x devices as there is equal PRU_ICSS_G subsystem on both devices.

& Properties for MyFirst_PRU_C_Program a *®

type filter text €CS General vor
Resource
€S General : :
v CCS Buid Configuration: Debug [Active] | Manage Configurations..
PRU Compiler
PRU Liner 5 Project s Products
PRU Hex Utility [Dise
Builders Device
C/C++ Build Eamily: PRU
C/Ce+ General Variant and core: <select or type filter text> | |AM243x LAUNCHPAD v flcssGopruo I~
Debug
Project Natures Connection v
Project References [] Manage the project’s target-configuration automatically

Run/Debug Settings

Project type and taol-chain
Compiler version: TIv233 - More...
Qutput type: Executable

Qutput format:

Device endianne: little

Linker command AM64x_PRUD.cmd ~ Browse...

Runtime support library: | <automatic> Browse.

Apply and Close Cancel

Figure 9 - Project configuration

The example source code of main.cis in the appendix. It shows basic operations of main and function call with

variables on stack and variables mapped to PRU data memory. The linker command file sets instruction and data

Tl Information — Selective Disclosure

12

memory. Stack size can be configured via project properties — CCS Build — PRU Linker - Basic Options. After New
project is generated the empty main.c can be replaced by the example in appendix. The build process starts with
either right-click on project and Build Project or using the “hammer” icon on the menu bar. After build has
finished without errors the .out file is loaded through MENU -> RUN -> Load -> Load Program. Browse for the
debug folder on the project to select the out file. Make sure you have selected PRU core when loading PRU out
file. Next step is to run the code with either single step debug (F5-key) or free-run (F8-key). MENU — View ->
disassembly brings up the window as shown in figure 10. The disassembler show C instructions and assembler
instructions interleaved.

= Disassembly 2 O Memory Browser [Fnter location hal51l €1 t
main():
000@lc: ©51AE2E2 SUB R2, R2, 26
000020: Eleccacs SBBO &R3.b2, R2, 12, 14
51 uint32_t x = 1;
» 000024 : 240001E1 LDI R1, 1
000028: El1ee2281 SBBO &R1.b@, R2, @, 4
52 uint32_t y = 2;
00002c: 240002E@Q LDI Re, 2
000@30: Ele4228@ SBBO &R@.be, R2, 4, 4
53 uint32_t z = @;
000034 : 240000EE LDI R14, @
000038: E168228E SBBO &R14.be, R2, 8, 4

55 a=1;
00803c: 240118E5 LDI R5, 272
0eee40: Elee2581 SBBO &R1.be, R5, e, 4

56 b =2;

000e44: 240114E4 LDI R4, 276

000048: E1002480 SBBO &R©.b0, R4, 8, 4
58 while(1) {

Figure 10 — Disassembly window

As described in the source code, the C function call uses register R14 and R15 for function arguments and return
value. Figure 11 shows the multiple windows of the debugger. In debug tab all cores are shown and the selected
core is in suspended mode — see target configuration section. On the right side there are multiple tabs to view
variables, expressions, PRU registers and breakpoints. Bottom left side shows the C source code and current
position of program counter is indicated by an arrow on the left. Disassembly and memory tab are shown on the
bottom right side. For PRU data memory choose PRU_Device_Memory in Memory Browser tab.

The build process generates a map file which is stored in debug folder of the current project. The map file lists all
the memory sections used by the program. For bigger projects it is useful to see how much instruction memory

is used by the program.

Extract from map file:

MEMORY CONFIGURATION

name origin length used unused attr fill
PAGE ©:
PRU_IMEM 00000000 00003000 000000d4 00002f2c RWIX
PAGE 1:
PRUO_DMEM_0 00000000 00001000 00000100 0000OTE0 RWIX

Tl Information — Selective Disclosure

13

.

4 Debug £

v

¥ LP-AM243x latest.ccxml [Code Composer Studio - Device Debugging]
~ i Texas Instruments XDS110 USB Debug Probe_0/MAIN_Cortex_R5_0_0 (Suspended})

= SOC_phyToVirt() at soc.c:374 0x00000000 (the entry point was reached)
<2 Texas Instruments XDS110 USB Debug Probe_0/MAIN_Cortex R5_0_1 (Disconnected : Unknc
2 Texas Instruments XDS110 USB Debug Probe_0/MAIN_Cortex R5_1_0 (Disconnected : Unknc
A2 Texas Instruments XDS110 USB Debug Probe 0/MAIN_Cortex R5_1_1 (Disconnected : Unknc
<& Texas Instruments XDS110 USB Debug Probe_0/DMSC_Cortex_M3_0 (Disconnected : Runnin
o Texas Instruments XDS110 USB Debug Probe_0/ICSS_GO_PRU_O (Suspended)

= main() at main.c:51 0x000024 (an error occurred: invalid register index 8)
 Texas Instruments XDS110 USB Debug Probe_0/ICSS_GO_RTU_PRU_0 {Disconnected : Unkno
2 Texas Instruments XDS110 USB Debug Probe_0/ICSS_GO_TX_PRU_0 (Disconnected : Unknow
<& Texas Instruments XDS110 USB Debug Probe_0/ICSS_GO_PRU_1 (Disconnected : Unknown)
A2 Texas Instruments XDS110 USB Debug Probe_0/ICSS_GO_RTU_PRU_1 (Disconnected : Unkno
<2 Texas Instruments XDS110 USB Debug Probe_0/ICSS_GO_TX_PRU_1 (Disconnected : Unknow
@ Texas Instruments XDS110 USB Debug Probe_0/ICSS_G1_PRU_Q (Disconnected : Unknown)

& _— P A1 Anecc e AT nR o o

<

< >
B mainasm Emaine Bmanasm @mainc ¥ Emainc @ maine ¥ =
44 /* PN
45 * main.c
46 */
. 47void main(void)
484
49
58 /* The compiler decides where to store x, y, and z */
51 uint32_t x = 1;
52 uint32_t y = 2;
53 uint32 t z = ©;
54
55 a=1; v

B §g =0

«-Variables % Expressions {iii Registers ¥ ° Breakpoints Ble#lnss
A~ Name Value Description
it R1 0x80000001 R1 Register [Core]
i R2 0x000000E2 R2 Regjister [Core]
i R3 0x0005001F R3 Register [Core]
i R4 0x00000114 R4 Regjister [Core]
i RS 0x00000110 R5 Register [Core]
1 R6 0x00000118 R6 Register [Core]
i R7 0x09302001 R7 Register [Core]
iif R8 0x80B18990 R8 Register [Core]
i R9 0xD28B3592 R9 Regjister [Core]
i R10 0xE2551E96 R10 Register [Core]
R11 0x1B547947 R11 Register [Core]
i R12 OxAEBDF6FF R12 Register [Core]
i R13 0x09C77CF7 R13 Register [Core]
i R14 0x00000000 R14 Register [Core]
i R15 0x00000002 R15 Register [Core]

= Disassembly 0 Memory Browser =

GvEvyev@a s

8

PRU_Device_Memory ~ ‘E

PRU_Device_Memory:0x90 - 0(+0x30) <Memory Rendering 1>

32-Bit Hex - Tl Style ~

ox %]

ex A

8x (2] 060010000

0x000000D8 00020000 00020000 00010000 00O20000 0030000 00R50000

©x000000F0 00000114 00000110 00000118

©x00000108

©x80000120

2 3

0x00000138

Figure 11 - CCS Windows for PRU debug

Tl Information — Selective Disclosure

14

5.2 My first PRU program — Assembler

Learning goal:

Example shows PRU assembler instructions with register view

B Example shows limits on addressing 1 bit, 8 bits, 16 bits and 32 bits

B Example shows how to use PRU cycle counter

B Example shows ‘move to line’ and manual change of PRU register to change program flow

The advantage of PRU assembler program is deterministic real-time performance. Every instruction on internal
register file and broadside acceleration is single cycle. At PRU speed at 333 MHz one cycle is 3 ns. Especially
usage of broadside accelerator overlaps with C compiler stack pointer register R2 and arguments R14-29. In this
case user can program in assembler or mix assembler with C Code.

Below main.asm file shows basic usage of PRU assembler instruction. Assembler source files start with directives
to build .out file with the linker and definition of main label as entry point of the program which gets mapped to

section .txt.

main.asm
.retain 5 Required for building .out with assembly file
.retainrefs ; Required for building .out with assembly
.global main
.sect ".text"

main:

1di r2.wl, oxffff
add r2.be, r2.bl, r2.b2
1mbd r2.b3, r2, 1
1sl r2.be, r2.b3, 3
clr r2.bi, r2.b1, 5
sbco &r2.b1, c24, 3, 1
lbco &r2.b2, c24, 3, 1
xin 160,&r2, 4 ; BSWAP widget
gbbs label x, r2, 17
1di r3l, 0x20 ; interrupt @ + enable (bit 5)
nop
label_x:
halt

The assembler program shows usage of assembler instructions with the scope of addressing at bit, byte, 16 bit
and 32 bit level. For example, first instruction after main: loads a constant into register r2 word1 which is in the
middle of 32 bit register. It makes a difference whether destination register is byte or word. The ADD command
sums up to bytes which overruns the byte boundary. However, the destination address of ADD is a byte and
therefore the result is truncated to a byte. Figure below shows the possible byte and word addressing modes.
There are also bit instructions which are defined by the bit number. The CLR instruction in the example clears bit
number 5 in register 2 byte 1. ZERO and FILL are instructions which can go over all 32 registers in a single cycle.
After power-up all PRU registers are random and ZERO instruction can be used to clear the complete register set
in a single cycle.

Figure 12 shows CCS windows for assembler source level debug. The register view has all PRU registers and
Program Counter (PC). Figure 13 shows different addressing modes and figure 14 lists all PRU instructions.

15
Tl Information — Selective Disclosure

5]

Debug 2 B £ 7 8 wVariables < Expressions iiti Registers 2 % Breakpoints Bl &lr

v & Texas Instruments XDS110 USB Debug Probe_0/MAIN_Cortex_R5_0_0 (Suspended) A Name Value Description
= SOC_phyToVirt() at soc.c:374 0x00000000 (the entry point was reached) v 4% Core Registers Core Registers
#2 Texas Instruments XDS110 USB Debug Probe 0/MAIN Cortex R5_0_1 (Disconnected : Unknown) i PC 0x00000118 PCOUNTER Register [Core]
»® Texas Instruments XDS110 USB Debug Probe_0/MAIN_Cortex R5_1_0 (Disconnected : Unknown) RO 0x00000004 RO Register [Core]
2 Texas Instruments XDS110 USB Debug Probe_0/MAIN_Cortex_R5_1_1 (Disconnected : Unknown) HR1 OxBBBEBEGE R1 Register [Core]
»® Texas Instruments XDS110 USB Debug Probe_0/DMSC_Cortex_M3_0 (Disconnected : Running) HiR2 Ox17FFFFFE R2 Register [Core]
~ o Texas Instruments XDS110 USB Debug Probe_0/1CSS_GO_PRU_O (Suspended) WR3 0x000D8504 R3 Register [Core]
= §./main.asm:9:21$() at main.asm:12 0x000118 ($../main.asm:9:21$ is an assembly function) 1 R4 0x5A31A828 R4 Register [Core]
@ »® Texas Instruments XDS110 USB Debug Probe_0/1CSS_GO_RTU_PRU_O (Disconnected : Unknown) o RS 0x7378E16E R5 Register [Core]
e T - oo B i 1 R6 0xD84504A1 R6 Register [Core]

5 =

B mainasm [©mainc [hwtypesh hwtypesh [&mainc B mainasm = " #vE e Ha

Disassembly O Memory Browser

A 9
r2.wl, exffff PRU_Device Memory ~ ‘O

r2.be, r2.bl, r2.b2 PRU_Device_ Memory:0x0 - 0 <Memory Rendering 1>
r2.b3, r2, 1 32-Bit Hex - Tl Style v
:'Eg‘ :Ei : oxeeseeceellDFeceeee)
ravoi, e, 3, 1 oxasaece1s
&r2.b2, c24, 3, 1 2 30
160,&r2, 4 ; BSWAP widget ox
label _x, r2, 17 oX 78
r31, ex2@ ; interrupt @ + enable (bit 5) :

X A

ox e

< ex D8
X o

Figure 12 — CCS source level debug

r0.b0
16[15 [0]
[T T T T T T T T T T T T T T T TTTTTT T T T
r0.b2
16[15 (e]7] [o]
A I A
r0.w0
16[15 87 [0]
(I T T T T T T T I T T T T T T e T e e
r0.wi1
16[15 87 [o]
I I A
Figure 13 — Addressing for PRU Register
Arithmetic Operations (green) Logic Operations (blue)
IO Operations (black) Program Flow Control (red)
« ADD + ADC « SUB « SUC + RSB
« RSC e LSL « LSR e AND e OR
+ XOR « NOT « MIN o MAX « CLR
e« SET e« LMBD « MOV e LDI e LDI32
« LBBO « SBBO « LBCO « SBCO
o JAL e JMP « CALL e (RET)
« QBGT « QBGE e QBLT e QBLE « QBEQ
* QBNE QBA « QBBS e« QBBC « WBS
« WBC e HALT e« SLP e MVIB e MVIW
« MVID e ZERO + FILL + XIN, XOUT, + TSEN

Figure 14 — PRU instruction set
In order to start new assembler project, follow the same steps as with the C project except for Empty project is

now “Empty Assembly-only Project”. Figure 15 shows the selection for empty assembler project.

16
Tl Information — Selective Disclosure

&8 New CCS Project O
New CCS Project
Create a new CCS Project.
Target: <select or type filter text> ~ | |AM243x_LAUNCHPAD
Connection: » Verify...
Cortex M [Arm] Cortex R [Arm] = PRU
Project name: MyFirst_PRU_Assembler_Program
Use default location
C\Users\a0746725\workspace_v10\MyFirst PRU_Assembler_ Browse...
Compiler version: TIv2.3.3 ~ More...

» Project type and tool-chain

~ Project templates and examples

type filter text

initialized for the selected device.

v [E Empty Projects
[# Empty Project
[& Empty Project (with main.c)
[2 Empty Assembly-only Project
[& Empty RTSC Project
~ [= Basic Examples v

After Empty Assembly-only Project is created the Project Explorer view show only Includes and Debug folder.

Figure 15 - New PRU assembler project

The linker command file can be added using Project Properties (right-mouse click on

Creates an empty assembly-only project

MyFirst_PRU_Assembler_Program Project, last option on pop-up menu). Figure 9 shows the settings for adding

linker command file.

-Variables & Expressions iiif Registers ¢ ®e Breakpaints

ol#rse s § =

Name Value Description
v %4 Debug PRU Debug Registers
~ i CONTROL 0x00000109 PRU Control Register [Core]
titt PCRESETVAL 0000000000000000 Program Counter Reset Value
it RUNSTATE 0 - HALTED Run State
£ RESERVED_1 000000 Reserved
i SINGLESTEP 1 - SINGLE_STEP Single Step Enable
£ RESERVED_O alaT=s Reserved
1t COUNTENAR Cycle Counter Enable
£ SLEEPING Q- WAKEUP Sleep Indicator
#it ENABLE 0 - HALT Processor Enable
£t SOFTRESET 1 Soft Reset
~ it STATUS 0x00000047 PRU Status Register [Core]
titt RESERVED 0000000000000000 Reserved
fitt PCOUNTER 0000000001000111 Program Counter
i WAKEUP 0x00000000 PRU Wakeup Enable Register [...
i CYCLECNT 1 (Decimal) PRU Cycle Count Register [Co...
i STALLCNT 0 (Decimal) PRU Stall Count Register [Core]

Figure 16- Enable PRU cycle counter

Tl Information — Selective Disclosure

17

With source level debugger there are various options to modify program execution. A right click in the source

code provides the options shown in figure 17. Besides breakpoints the user can use “Run to Line” or “Move to

Line”. These functions are useful when testing instructions with different register settings. For example move

to line of assembler instruction. Modify PRU register with different value and single step the instruction.

)
L~

L

#

5
=

#F O

Breakpoint (Code Composer Studio)

Undo Typing
Revert File
Save

Open With
Show In
Open Declaration
Cut

Copy

Paste

Quick Fix
Shift Right
Shift Left

Build Selected File(s)
Clean Selected File(s)

Resource Configurations

Run to Line

Move to Line

Resume at Line

Add Watch Expression...
Run As

Debug As

Profile As

Figure 17- File options

Ctrl+Z

Ctrl+S

>

Alt+Shift+W >
F3

Ctrl+X
Ctrl+C
Ctrl+V

Ctrl+1

Ctrl+R

18

Tl Information — Selective Disclosure

5.3 My first PRU program — mixed C with Assembler

Learning goal:
B Example shows assembler routine called from C
B Example explains parameter transition from C to assembler
B Example explains return value from assembler to C
B Example discusses context safe in assembler when using conflicting registers with accelerators
o Using Scratch Pad register

Projects in C language can be extended with assembler routines. The linker will handle integration of assembler
functions with compiled C program. The example from appendix is a simple function call of assm_add with two
arguments. The label is put between parallel bars “| |” to indicate the function name which is called from C
program. The assembler function is declared in C file with arguments and return value. As described in first
example, PRU registers R14 and R15 are used to hand over arguments in function calls. The return address is in
higher word of register r3. In source level debugger a single step execution (F5 key) automatically jumps from C

source into assembler source and back.

Extract assembly file:
.sect ".text:assm_add"
.clink
.global ||assm_add| |

| |assm_add| | :

; argl is in R14, arg2 is in R15
; the return value is stored in R14

; add argl and arg2. Store the sum in the return register
ADD R14, R14, R15

; return from function assm_add
JMP r3.w2

Extract C file:
/* Declaration of the external assembly function */
uint32_t assm_add(uint32_t argl, uint32_t arg2);

/*
* main.c
*/
void main(void)
{
/* The compiler decides where to store x, y, and z */
uint32_t x = 1;
uint32_t y = 2;
uint32_t z 0;

a=1;
b = 2;

while(1) {
/*
* use the assembly function to add x and y, then

* store the sum in z
*

z = assm_add(x, y);

This example does not modify any other registers in the assembler function and therefore does not require to
save and restore register context using scratch pad. There are 3 extra register banks which can be used for

Tl Information — Selective Disclosure

19

context storage or exchange with other PRU. Scratch pad registers are accessed in single cycle using XIN or XOUT
instructions in assembler. There are also broadside intrinsics which can be called from C source. For example:

xout BANK@_ID, &re, 27*4 ; save RO-r26
saves 27 register into first scratch pad bank.

xin BANKO_ID, &r@0, 27*4 ; save RO-r26

Restores the register context back into PRU registers. There is also an option to apply shift operation when
transferring register content to and from scratch pad.

20
Tl Information — Selective Disclosure

6 ARM Driver

6.1 PRU2HEX

Learning goal:

B Explains how PRU firmware is generated for ARM download vs CCS out file download
B Explains step to copy header file from PRU project to ARM project.

PRU firmware can be loaded using the .out file generated by the project build process. This method is typically
used during development and source level debug. For production and test, the PRU firmware is loaded from ARM
side. Pre-defined SDK examples can also be configured with SYSCONFIG tool which generates code including the
driver to manage PRU code download.

Here we describe how the build process in CCS to generate a header file which contains PRU opcode in a structure.
To enable PRU HEX Utility go to the properties of the project and click on Build -> PRU Hex Utility and enable the
utility as shown in figure 22.

89 Properties for SPI-SPM_controller PRG1_PRUD o X
PRU Hex Utility >
Resource
General
« Build Configuration: | Debug [Active] v | Manage Configurations

v PRU Compiler

Processor Options
Optimization [Enable "PRU Hex Utility
Include Options

Predefined Symbols
Advanced Options
PRU Linker Command-line pattern: | ${command) $(flags} $(output flag) ${output) $(inputs}
v PRU Hex Utility
General Options
Diagnostics Options --diag_wrap=off
Output Format Option
Load Image Options
Additional Array Form:
Debug Edit Flags.

Command '$(CG_TOOL_HEX)

Summary of flags set

< > | See General for changing tool versions and device settings

Apply and Close Cancel

Figure 18 - Enable PRU Hex Utility

Next step is to specify the output file name which is found under General Options. Figure 23 highlights the entry
for the header file.

&8 Properties for SPI-SPM_controller PRG1_PRUO [m} X

pe filter text General Options
Resource
General
v Build
PRU Compiler
PRU Linker
~ PRU Hex Utility [] Output as bytes rather than target addressing (--byte, -byte)

Configuration: Debug [Active] ¥ Manage Configurations..

General Options
Diagnostics Options
Output Format Options
Load Image Options
Additional Array Form: = Specify map file name (--map, -map=file)

Specify fill value (—fill, -fill=val)
[[J Select image mode (--image, -image)
: Include linker fill sections in images (--linkerfill, -linkerfill)

Debug Specify memory width (--memwidth, -memwidth=wid
Specify output file names (—-outfile, -o=file)

[Quiet Operation (--quiet, -quiet, -q)

< > | Crarifu rnm wirth (o.enmuinth _rnmuidth—width)

ttings Apply and Close Cancel

Figure 19 - Output file name

21
Tl Information — Selective Disclosure

With Additional Array Format options a prefix for the output array name is provided.

text

Resource
General
v Build
PRU Compiler
PRU Linker
v PRU Hex Utility
General Options
Diagnostics Options
Output Format Options
Load Image Options
Additional Array Formi
Debug

& Properties for SPI-SPM_controller_PRG1_PRUO

Additional Array Format Options

Configuration: | Debug [Active |

Prefix for output array names (--array:name_prefix=string)

Select uint8_tjuint32_t type for page 0 array (--array:page0_type_size)

Figure 20 - Output name

Final step is to define the Output format to “Array (--array)”

~ Manage Configurations...

SPI_SPM_controller_PRG1_PRUO

Apply and Close

Cancel

type filter text
Resource
General
~ Build
PRU Compiler
PRU Linker
~ PRU Hex Utility

Debug

Below is an example for generated header file which is used by PRU driver to load the firmware into PRU core.

General Options
Diagnostics Options
Output Format Options
Load Image Options
Additional Array Form:

) Properties for SPI-5PM_controller_PRG1_PRUD

Output Format Options

Configuration: Debug [Active |

Array (--array)

Output format

~ Manage Configurations...

Apply and Close

Cancel

Figure 21 - Output format

const uint32_t lab_instrl_image 0[] = {

ox24ffffa2,
0x00422202,
0x2701e262,
0x09036202,
0x1d052222,
0x81031822,
0x91031842,
0x2ed00182,
0x240020ff,
0x10000000,
0x22000000} ;

Tl Information — Selective Discl

osure

22

Figure 26 shows the Post-build step to copy the generated header file from PRU project to ARM project. The

filename and folders need to be adjusted to the current project.

% Properties for SORTE_g_master

type filter text Build
v Resource
Linked Resources

Resource Filters Configuration: PRUO [Active]

General
v Build
PRU Compiler «» Builder [Validator s@ Variables M Environment -~ Steps #| Link Order
PRU Linker Pre-build steps
PRU Hex Utility
Debug
Git Description:

POSL Duilciepbar
copy SORTE_g_master_PRUO.h ..\,.\SORTE_G_AM6S®

Description:

Alternatively, create and define a new custom post-build

(2) Show advanced settings

Figure 22 - Copy firmware file to ARM project

6.2 SYSCONFIG

step tog!l with the name:

Manage Configurations...

© Dependencies

<>

Apply and Close Cancel

Starting from empty project in MCU+ SDK, support for PRU (ICSS) can be added using SYSCONFIG tool which is
integrated into CCS. Figure 27 shows basic PRU configuration with settings for PRU Core clock and Industrial

Ethernet Peripheral (IEP) clock. The tool is integrated to CCS and opens with .syscfg file.

Tl Information — Selective Disclosure

23

.workspace,vw - PRU_driver_example/example.syscfg - Code Composer Studio
File Edit View Project Run Tools Scripts Window Help

fB-HGROPUes 2 B8 - PRI -S@vifevine
‘s [@mainc [@tiboard ope.. [E]CSL secProx.. (9 sorte_app.c [lab_instr1._f...
= te X « & - Software » PRU (ICSS)

~ TIDRIVER PORTING LAYER (...

PRU (ICSS) (1 Added)

Clock 1 @G
& Debug Log 1QG & CONFIG_PRU_ICSSO
MPU ARMv7 cQ@®
RAT ® Name
TIMER ® Instance
~ TIDRIVERS (22) Core Clk (Hz)

ADC ®
BOOTLOADER (C] SYNC.MODE
cRC ® IEP Clk (Hz)
:Z:P 8 Additional ICSS Settings
EPWM ®
EQEP ® ICSSGO INTC Internal Signals Mapping
FSI_RX ®
FSILTX ® 1 added &
GPIO ® @)/CSSGO INTC Internal Signals Mapping 0
GTC ®
12¢ ® ICSSG Instance
IPC ® INTC Event Signal
MCAN ® INTC Channel
MCSPI ®
MMCSD ® INTC Host Interrupt
OSPI ®
PCIE ®

| Prudcss) I XC}
UART - XC}
UDMA ®

i
@ AM243x MCU+... emptyc 8 examplesyscfg 2 s

Qo® D

@ ADD REMOVE ALL

CONFIG_PRU_ICSSO
ICSSGO

LRIE-

@ i

(oY

300000000

16: pro_pru_mst_intr{0]_intr_req

HER B RN R

Channel 2

Host Interrupt 2

Figure 23 -SYSCONFIG PRU settings

Tl Information — Selective Disclosure

6.3 PRU Driver API

Learning Goal:

Explains basic steps to get handle, control PRU, download PRU and start PRU
Discusses how to work with multiple PRUs from single ARM driver
Discusses timing to change firmware on the fly

Simple example (GPIO) which only connect to ARM in debugger

APIs for PRU_ICSS are documented in SDK+ online documentation:

https://software-dl.ti.com/mcu-plus-

sdk/esd/AM64X/08 04 00 17/exports/docs/api guide am64x/group DRV __PRUICSS MODULE.html

Following steps are needed to configure, load and run PRU code from ARM side.

/** \brief Global Structure pointer holding PRUSS1 memory Map. */
PRUICSS_Handle gPrulcss@Handle;

void generic_pruss_init()

{

HwiP_Params hwiPrms;
int32_t retVal;
uint32_t intrNum;

gPrulcss@Handle = PRUICSS_open(CONFIG_PRU_ICSSO);
PRUICSS_disableCore(gPrulcss@Handle, PRUICSS_PRU®);

/* clear ICSSO PRU data RAM */
gPru_dramx = (void *)((((PRUICSS_ HwAttrs *)(gPrulcss@Handle->hwAttrs))->baseAddr)

+ PRUICSS_DATARAM(PRUICSS_PRU®));

}

memset(gPru_dramx, 0, (4 * 1024));

/*load firmware from structure pru@_image_© generated by PRU Hex Utility */
PRUICSS_writeMemory(gPrulcss@Handle, PRUICSS_IRAM PRU(PRUICSS_PRU®),

0, (uint32_t *) prue_image_0,

sizeof(prud_image 90));

PRUICSS_ resetCore(gPrulcss@Handle, PRUICSS_PRU®);

/*Run firmware*/
PRUICSS_enableCore(gPrulcss@Handle, PRUICSS_PRU®);

The complete ARM C source file for the driver is in the Appendix. Same procedure needs to be followed to handle

more PRUs the names are defined in the corresponding header file — drivers/pruicss.h . Below the defines for other

PRU cores.

#define PRUICSS_PRU® (eU)

25
Tl Information — Selective Disclosure

https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_04_00_17/exports/docs/api_guide_am64x/group__DRV__PRUICSS__MODULE.html
https://software-dl.ti.com/mcu-plus-sdk/esd/AM64X/08_04_00_17/exports/docs/api_guide_am64x/group__DRV__PRUICSS__MODULE.html

t#tdefine
ttdefine
ttdefine
ttdefine
ttdefine

PRUICSS_PRU1
PRUICSS_RTU_PRU®
PRUICSS_RTU_PRU1
PRUICSS_TX_PRU®
PRUICSS_TX_PRU1

(1U)
(2U)
(3U)
(4U)
(5U)

The AM243x/AM64x has in total 12 PRU cores. Each core can be loaded with new firmware during ARM run-time.

This allows for on-the fly change of PRU functions with new functions loaded and started in less than 1 ms. For

bigger projects where PRU instruction memory is limited the firmware can load initialization code first followed by

operational code and in case of errors diagnostic code.

6.4 Boot from Flash

(to be completed — refer to MCU+ SDK)

Tl Information — Selective Disclosure

Explains all the steps from PRU build, ARM build, flash build, flashing the example and booting from flash.

26

7 Appendix

7.1 References

PRU Optimizing C/C++ Compiler User’s Guide

PRU Assembly Language Tools User’s Guide

PRU assembly instructions

AM64x/AM?243x Technical Reference Manual

AM?243x Datasheet

Tl Information — Selective Disclosure

27

https://www.ti.com/lit/pdf/spruhv7
https://www.ti.com/lit/pdf/spruhv6
https://www.ti.com/lit/pdf/spruij2
https://www.ti.com/lit/pdf/spruim2
https://www.ti.com/lit/gpn/am2434

7.2 PRU IO poster

= = = S = = e = = e = = EEDYER]
NI Z41¥3d | NI T4I¥3d NI 04I¥3d|N3 LNO Z4IH¥3d [3N0 Z4IH3d IO ZJI¥3d NI LNO T34 IO T4IH3d [3nO T4IH3d N3 LNO 041¥3d 300 041¥3d N0 0diH3d _Eo.._n:ﬂn g
apow
1NOX20MW | LNOViVa
N0 Ylys [eL3S
61049 81049 L1049 91049 ST049 ¥1049 £1049 1049 11049 01049 6049 8049 L0499 9049 $0d49 04D £049 7049 1049 0049 indinp wa1a
asas | ¥w'sas | a7zas | ¥wzas | a@™sas | ¥weas | a'sas | ¥w7sas | avas ¥7vas a’eas | »¥mTeas a"zas ¥nzas | aTias a07Tas a’oas | ¥woas e3jaQ ew3is X6
NIviva Ul JIYys 19-82
3uppop | STNIVAVA | PTNIVAVG | ETNIVAVG | ZINIVAVG | TINIVAVG [OTNIVAVG |6NIVAVG [SNIVIVG INIVIVa | 9NIviva ZNIVLVa INIVAVG | oniviva | @imde) j3jjesed
611D 811D JA") 9TIdD STIdD) £11dD ZTdo do otido 6149 8149 2149 91d9 149 vidD €149 z1d9 TIdo 0ldD ndu) pang
6T0/1d9 |8T0/1d9 | £10/1d9 [9T0/1dD [STO/1dD | ¥TO/1dD |€T0/1dD | ZT0/1dD | TTO/1dD [0T0/IdD [60/1dD| 80/1dD £0/1d9 | 90/149 S0/1d9 v0/1d9 | €0/1d9 z0/1d9 10/1d9 | 00/1dD o/1

S31q 7 40 321s 0414 XY ‘S}q 7€ J03ZIs 0414 XL
s|eusis 049/1d9 N¥d 3Y1 Yiim paxajdiainw aie sQ/| s,22epa3u] [erayduad ayl ‘ZH 9T 01 ZH) 00T Woij 38uel pneq YlIm sjauueyd g

2oep3ul |esaydiuad X

pajqesip/pajqeus aq ued 3soy/usAe oes ‘sjauueyd ydnuisul Indino oz siioddns ‘syueal 09T 03 dn Sulinided
T€ ‘0€ 31q $3sN ‘s|auueyd 1dniisiul 9SSII NYd J013S PIINPaJ B 01 3IA3P 3Y3 Jo sped Juasayyip woly Sujwod sydnuajul sdew (JLN|)43]1043u02 3dnua3u|

(T€y) 2LNI

(T€4/0€Y) OI1dD

3POIA JUNO) ¥20[) Paxi4 Pue (3Neyap) 3O %20]) Buluuny 3314 :sdpow g suoddns &«
(ZHWSZZ /ZHAOOZ /ZHNOST) 32012 H12730D™ 955D 3y3 03 pai|dde s1apIAIp papedsed 0M3 JO JOSIAIP BAIIBYE 341 Aq pa[[011U0D S| 338 JIYs 3YL
(201270n¥d) [T]oc 0NYd 40 @8pa Buisu A1ana uo (LNOVLYA 0N¥d) [0J0E40NYd 40 In0 paIys si e1eq

apowW N0 Yiys [el3S

syndino asodind-|esauasd |eyoy op 2.6 3.3y
[67:0]049 0NY¥d 03Ut Apd3au1pspaay [6T:0]0€4"0NYd

ndinQ a1g

(0€Y) sapow indinQ asodind-|e1auan

3|npow 1y [N @yrAquanup Ajjeusalur [0:62] snieas Tes W1

“o0|q dwod Ja3unod 8q 150.d e sul > 0S| [3UURYI YIe3 ‘|3UURYD 18Y1 JOJIUSAS Y202 3AI123}43 3Y) UO aN|eA JuUnod ay3 sajepdn J31unod ajdwes iyl elaa ewish X6
*$31q 8 @JB JOJR|NWINIIE pUE J33UN0d Yoe3 “Ja3|lj £2UIS 31 JOJ SI0I2|NWNIIE Y1 318 YdIYM ‘SI83unod papedsed aaly) sey |auueyd yoed ‘1usaAs 0| Jad s, JO J3quinu syl s3unod Joles8aju| W20 'S
T 10 0 =U3iaym ‘(yg :anjea)saisiSa; JQON 149 0NY¥d [0-T]O3Y 094249 95SII Agpajqeus 14 1IN

118 LBIS M3U JOJ YDJe3as 3|qesip pue uoiesado141ys 1ua.ind azaal4/dois pue (9T73ud) 133unod iys ‘(gs) uondalaq 3ig Mels suoddns osjel| &
(ZHINISZZ /ZHINOOZ /ZHINOST) %2013 Y1230 DSSI 3y3 03 paijdde SI3pIAIp PapeISEd OM) JO JOSIAIP BARI3448 3U3 AQ P3||03U0I S| 8384 IYS 3L
*as|nd %202 [eulajul Ue U 1835188l 31Ys 31q-8Z € 03Ul paylys pue pajdwes si NIYLYA

Spouw ul 31Ys [eHIS UG-8Z

PaMaAul 20D uNYd/¥2012”unyd lenba ||im 31 usy) ‘eanedau/aanisod aq 01 painSiu0d SISUNDOP §| €
12351831 942 95SII NYd 2U3 ySnouyy ajqewwesdosd [9T]TEY NINDOTD Jo 28pa~3au Jo a8pa~sod ayy Aq pasnides st [ST:0]NIVLVA

aimdes |ajjesed 3q-9T

‘|e3o3 ul synduj @sodind-jesauas og 3. U3y L
21035 1|NeJ3Q Ul TEY NYd 3Y3 03Ul A2alip spaay [0:6T] IdD

anduj 32311q

(1Y) sepow 3ndu| asoding-|esauan

|2]jeed uianl@221 ss@d0.d ued pue jndul TEY 295 NY¥d XL PUe N¥d NIY -
sadepiajul ||e uo |013u0d 3ndino pueindul |Inysey N¥d -
18351821 TEY YSnouyy |dO pue 19351831 0gY YSnoiyl 0do Ise} |dwy id N¥d Yyoe3 -

sapow nding/indu| TE/0EY NYd

28

Tl Information — Selective Disclosure

Suisn U3y 3Insu3
nw | or syoc-|IA 7 03 dn [03ued = = L SAEL (8a4) aseg ereq sy
e 12/02 PUE 553398 03 (4d 10} 3981331 Of| SE 3ELIaU | EIPaY SWiI-{eay TUXL/ 27 Xd € 1 1IN Nnyd sdj2H ‘asemwuy 03 Suiddew yiod sapiacid pue dnyool MH sWiopad
T 9vT JaSeuew yse] a33u) 0] pash aq ue) ‘Sulleys p—
i G s Ruat 221n0s2. pue Juljeusis 158 MO||E 03 UOIJRIIGIE AWI}-[B2J [UUBYD b9
201IS B UIYHM N LY PUB N¥d uizaauuod pedydields 234g-z€ Y 2zl
54233113 MH ZGT "Moddns
w |z-ot Ju23u0d dewas 03 ANjeUORIUNY YIYs LNOX/NIX AR v (474 uondwsa1d pue s|ars] Ao 33143 Y3IM SISBEURIA ¥ SWi-{eaY 188eueyn ysel
*$3403 3Y1 JO JU31U03 13151824 Joj 38eu0ls Atesodwa) =
o {144 VING 1z v e J13pJo 33Aq dems 03 (67Y — 0Y) 51235182y [BUISIUI 3Y3 JO Aue SMO||Y (dvmsa) dems a3Ag
fein Jajsuel) ewp wajshs Suilelaladde 1oy pasn 091
niy | ev/se 533Aq 7€ X 957 ‘GY-7YSIa1s1Bal T niy 8€/6v wnsyI3yd dan e2ip
nyd 8r/0E |BuI33Ul YIIM S193UU0 JBY] INYY 3PISPEDIg & 7 PA1edipag nyd 6E/LY B} puB AYY (SG) 2pIspeolg ay3 siojuow Ajsnonuijuo)
”H €8- 08 W33sAs 3Y3 Ul S2IIUS 7 UI3MISG OJUl [0J3U0I pUR BIRP VNG i1sdzayx v 10 m_m_Eu:>_oﬁﬁﬂ.ﬂﬂnwnm%ﬂ“cﬂm\wmﬂh:uE T ZE/91DHD
12)2ed JO SpJoM J3jsuel) 0] pasn ‘23ej23u| BulWieanls 13ded = [Sd i i
00T $323pIM 33JM XZ pues123pIm pest Xg (=3|nWwnoay Ajdiynia Jo Ajuo Aldiniy)
v -96 *s21Aq 9 03 AN Y1IM SJ2JSUBL] 21IM pUE peal 3]2Ad 3j8uls 234949 WING snanzix i oo S2POW 7 YUM }Ns3U UG-H9 B saAIS pue spuesado 1g-z€ saydiyniyl YW
a10) al uolaung 10)e13}300y _ 240D al uopoung lojesaf@ay

Jajsuel) ejeq

$101B13|322Y 9

29

M| m 7 My 7w

_ m/u ped yspesas 3d|

_ $8J07 21y} JO 51235132 ||& O 55202E SBH ped ysieias
_ m/d _ M WING Sz
[M/ wrise TNY¥d XL

CIEERE]

S10)e18[800Y
apispeaig

Asowap peg
~Y3RI0S NHd X

apispeoug

0NYd X1

_ M _ iNG 1sdzag
M/ (2349 v9) M/Y (2149 Z€) M/¥ _ VING SRGAZIX

M 904

(es12n 2214 pue ueipu3 31 03 uRlpu3-23an) 31Aq dems 03 (6ZH 01 OH) 543151824 NYd |BUIZUI Y] Jo Aue sajqeu3

] M
My | d
M b

Asowaw
Ped-Yaes N¥d

M

HE

Tl Information — Selective Disclosure

TEd sz_mﬂz mN-_—nﬂm_mﬂz ST vﬂz_mﬂz_uuz_ﬂuu__eﬂz_mﬁimﬂ-_h.—z_w"x_m.nﬂ_v.nz_M~x_m.n¢_.n.n=_n-x_ 64 _nx _ [_ kL] _ 1] % L _ i1 _ ¢] _ H _ 0Y |siojesajany

s1a15189y

7.3 PRU broadside poster

0d9 = (23um/pea1) TeY / 149 = (Ajuo peas) oy 4235132y «
uol1anJ3sul 3|Buls e Ul paiajsuel] 3q 01 (s31Aq $2T 40 ‘0£Y-0Y) s12151821 T€ 01 dn 53|qRU3 2B SIYL

Asowap peg
-Y23eI0S Nd NLY

s3u21u09 ay3 Jajsuesiouonanasu “x so A"x My ayy sasn 23ep121u) pispeosg €« _
T/0NYd XL PUE T/0 N¥d N.LY ‘T/0 NY¥d 52103 9 4O 535I5U0 DSSII N¥d TNyd Ny

uojBWIOJU| [RIBUID) weiSe|qydo|g

SNq e1epg-y¢0T —SuolduNny apispeotg 9 SSO|

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with T1 products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. T| grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify Tl and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for
Tl products.

Tl objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

Tl Information — Selective Disclosure

30

